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SUMMARY

Several families have been reported with autosomal-
dominant frontotemporal dementia (FTD) and amyo-
trophic lateral sclerosis (ALS), genetically linked to
chromosome 9p21. Here, we report an expansion
of a noncoding GGGGCC hexanucleotide repeat in
the gene C9ORF72 that is strongly associated with
disease in a large FTD/ALS kindred, previously re-
ported to be conclusively linked to chromosome
9p. This same repeat expansion was identified in
the majority of our families with a combined FTD/
ALS phenotype and TDP-43-based pathology. Anal-
ysis of extended clinical series found the C9ORF72
repeat expansion to be the most common genetic
abnormality in both familial FTD (11.7%) and familial
ALS (23.5%). The repeat expansion leads to the loss
of one alternatively spliced C9ORF72 transcript and
to formation of nuclear RNA foci, suggesting multiple
disease mechanisms. Our findings indicate that re-
peat expansion in C9ORF72 is a major cause of
both FTD and ALS.

INTRODUCTION

Frontotemporal dementia (FTD) and amyotrophic lateral scle-

rosis (ALS) are both devastating neurological diseases. FTD is

the second most common cause of presenile dementia in which
degeneration of the frontal and temporal lobes of the brain

results in progressive changes in personality, behavior, and

language with relative preservation of perception and memory

(Graff-Radford and Woodruff, 2007). ALS affects 2 in 100,000

people and has traditionally been considered a disorder in which

degeneration of upper and lower motor neurons gives rise to

progressive spasticity, muscle wasting, and weakness. How-

ever, ALS is increasingly recognized to be a multisystem dis-

order with impairment of frontotemporal functions such as

cognition and behavior in up to 50% of patients (Giordana

et al., 2011; Lomen-Hoerth et al., 2003; Phukan et al., 2007).

Similarly, as many as half of FTD patients develop clinical symp-

toms of motor neuron dysfunction (Lomen-Hoerth et al., 2002).

The concept that FTD and ALS represent a clinicopathological

spectrum of disease is strongly supported by the recent dis-

covery of the transactive response DNA binding protein with

Mr 43 kD (TDP-43) as the pathological protein in the vast majority

of ALS cases and in the most common pathological subtype of

FTD (Neumann et al., 2006) (now referred to as frontotemporal

lobar degeneration with TDP-43 pathology, FTLD-TDP) (Mack-

enzie et al., 2009).

A positive family history is observed in �10% of ALS patients

(Gros-Louis et al., 2006), while up to 50% of FTD patients report

family members with FTD or related cognitive and behavioral

changes (Graff-Radford and Woodruff, 2007), supporting the

important contribution of genetic factors to these diseases.

The most common currently known cause of familial FTLD-

TDP involves loss-of-function mutations in the gene for the

secreted growth factor progranulin (GRN) (Baker et al., 2006;

Cruts et al., 2006). Although GRN deficiency has been directly

linked to TDP-43 dysfunction and aggregation in a neuronal
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Figure 1. Neuropathology in Familial FTD/

ALS Linked to Chromosome 9p (Family

VSM-20)

(A and B) FTLD-TDP characterized by TDP-43

immunoreactive neuronal cytoplasmic inclusions

and neurites in (A) neocortex and (B) hippocampal

dentate granule cell layer.

(C) TDP-34 immunoreactive neuronal cytoplasmic

inclusions in spinal cord lower motor neurons,

typical of ALS.

(D) Numerous neuronal cytoplasmic inclusions

and neurites in cerebellar granular layer immuno-

reactive for ubiquitin but not TDP-43.

Scale bar: (A) 15 mm, (B) 30 mm, (C) 100 mm, (D)

12 mm.
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culture model of disease and in GRN knockout mice, the exact

relationship between GRN insufficiency and TDP-43 dysfunction

remains unknown (Ahmed et al., 2010; Guo et al., 2010; Yin et al.,

2010). In familial ALS, �15%–20% of patients are found to have

mutations in the Cu/Zn superoxide dismutase gene (SOD1)

(Rosen et al., 1993). Treatments shown to be effective in SOD1

mouse models, however, have generally not been effective in

ALS clinical trials, and the absence of TDP-43 pathology in cases

with SOD1 mutations suggests that motor neuron degeneration

in these cases may result from a different mechanism (Macken-

zie et al., 2007). For these reasons, the recent identification of

mutations in TDP-43 (encoded by TARDBP) (Kabashi et al.,

2008; Sreedharan et al., 2008) and the related RNA-binding

protein fused in sarcoma (FUS) (Kwiatkowski et al., 2009; Vance

et al., 2009) in �5% of familial ALS patients has significantly

shifted the focus of ALS research and implicated abnormal

RNA processing as a critical process in ALS pathogenesis

(Lagier-Tourenne et al., 2010).

Further support for the concept that FTD and ALS are closely

related conditions is the recognition that both clinical syndromes

may occur within the same family, often with an autosomal-

dominant pattern of inheritance. This familial association is not

well explained by the currently recognized genetic defects;

GRNmutations are not associated with significant motor neuron

deficits, while patients carrying mutations in SOD1, TARDBP, or

FUS are rarely affected by FTD. Linkage analysis in several auto-

somal-dominant families in which affected members develop

either ALS or FTD or both, and where the pathology is consis-

tently TDP positive, have suggested a major locus for FTD/ALS

on chromosome 9p21. Combined data defined a minimum

linkage region of 3.7 Mb, containing only five known genes

(Boxer et al., 2011; Gijselinck et al., 2010; Le Ber et al., 2009;
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Luty et al., 2008; Morita et al., 2006; Pear-

son et al., 2011; Valdmanis et al., 2007;

Vance et al., 2006). Importantly, the same

chromosomal region has been identified

in several large independent genome-

wide association studies (GWAS) of both

ALS and FTD, implicating the genetic

defect at chromosome 9p in sporadic

forms of both diseases (Laaksovirta

et al., 2010; Shatunov et al., 2010; Van
Deerlin et al., 2010; van Es et al., 2009). Furthermore, the associ-

ated ‘‘risk’’ haplotype has been the same in all ALS and FTD pop-

ulations studied and has also recently been shown to be present

in all affected members of several 9p-linked FTD/ALS families

(Mok et al., 2011).

Our collaborative group from the University of British

Columbia (UBC), the University of California San Francisco

(UCSF), and the Mayo Clinic Rochester (MCR) previously re-

ported a large autosomal-dominant FTD/ALS kindred named

VSM-20 for ‘‘Vancouver, San Francisco, and Mayo family 20,’’

with conclusive linkage to chromosome 9p (maximum two-point

LOD-score, 3.01) (Boxer et al., 2011). Postmortem evaluation of

three affected members showed a combination of FTLD-TDP

and ALS with TDP-immunoreactive pathology (Figure 1). Pre-

vious extensive sequencing of all exons and exon-intron bound-

aries of the genes within the candidate region did not identify

the disease causing mutation in this family. Here, we provide

evidence that disease in family VSM-20 is caused by an ex-

panded hexanucleotide repeat in a noncoding region of chromo-

some 9 open reading frame 72 (C9ORF72) and that this repeat

expansion is the most common cause of familial FTD and ALS

identified to date.

RESULTS

ExpandedGGGGCCHexanucleotide Repeat inC9ORF72

Is the Cause of Chromosome 9p21-Linked FTD/ALS
in Family VSM-20
In the process of sequencing the non-coding region ofC9ORF72,

we detected a polymorphic GGGGCC hexanucleotide repeat

(g.26724GGGGCC(3_23) in the reverse complement of

AL451123.12 starting at nt 1), located between noncoding
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C9ORF72 exons 1a and 1b. Fluorescent fragment-length anal-

ysis of this region in samples from members of family VSM-20

resulted in an aberrant segregation pattern. All affected individ-

uals appeared homozygous in this assay, and affected children

appeared not to inherit an allele from the affected parent (Figures

2A and 2B). To determine whether the lack of segregation was

the result of single allele amplification due to the presence of

an unamplifiable repeat expansion, we used a repeat-primed

PCR method specifically designed to the observed GGGGCC

hexanucleotide repeat. This method suggested the presence of

repeat expansions in all affected members of family VSM-20,

but not in unaffected relatives (Figure 2C). Subsequent analysis

of 909 healthy controls by fluorescent fragment-length analysis

identified 315whowere homozygous, however no repeat expan-

sions were observed by repeat-primed PCR. The maximum size

of the repeat in controls was 23 units. These findings suggested

the presence of a unique repeat expansion in family VSM-20 and

prompted us to perform Southern blot analysis on DNA from four

different affected and one unaffected member of VSM-20. In

addition to the expected normal allele, we detected a variably

sized expanded allele, too large to be amplified by PCR, which

was found only in the affected individuals (Figure 2D). In all but

one patient, the expanded alleles appeared as single discrete

bands; however, in patient 20-17 (Figure 2D, lane 5) two discrete

high molecular weight bands were observed, suggesting so-

matic instability of the repeat. Based on this small number of

patients, we estimated the number of GGGGCC repeat units to

range from approximately 700 to 1600.

ExpandedGGGGCCHexanucleotideRepeat inC9ORF72

Is a Frequent Cause of Disease in FTD and ALS Patient
Populations
The proband of family VSM-20 (20-6) is part of a highly selected

series of 26 probands ascertained at UBC, Vancouver, Canada,

with a confirmedpathological diagnosis of FTLD-TDP and aposi-

tive family history of FTD and/or ALS. We previously identified

GRN mutations in seven probands (26.9%) from this series, all

from families with a clinically pure FTD phenotype; however,

the genetic basis for the disease in the other families remained

unknown. Using a combination of fluorescent fragment-length

and repeat-primed PCR analyses, we then found that 16 of

the 26 FTLD-TDP families in this series (61.5%) carried

expanded alleles of the GGGGCC hexanucleotide repeat; nine

with a combined FTD/ALS phenotype and seven with clinically

pure FTD. In five of these families, DNA was available from

multiple affectedmembers and in all cases, the repeat expansion

was found to segregate with disease (Figure 2 and see Figure S1

available online). These findings suggest that GGGGCC ex-

pansions in C9ORF72 are the most common cause of familial

FTLD-TDP.

To further determine the frequency of GGGGCC hexanucleo-

tide expansions in C9ORF72 in patients with FTLD-TDP path-

ology and to assess the importance of this genetic defect in

the etiology of patients clinically diagnosed with FTD and ALS,

we analyzed 696 patients (93 pathologically diagnosed FTLD-

TDP, 374 clinical FTD, and 229 clinical ALS) derived from three

well-characterized patient series ascertained at the Mayo Clinic

Florida (MCF) and MCR (Table S1). This resulted in the identifi-
cation of 59 additional unrelated patients carrying GGGGCC

repeat expansions, including 22 patients without a known family

history (Table 1; Figure S1). In a subset of these patients, the

sporadic nature of the disease could potentially be explained

by the early death of one or both parents (3/22), adoption (1/

22), or a lack of sufficient information (8/22); however, in 10

patients the clinical records suggested a true sporadic nature

of the disease. The GGGGCC repeat was found in 18.3% of all

patients with FTLD-TDP pathology from the MCF brain bank,

and explained 22.5% of familial cases in this series. It should

be noted however, that this is a dementia-focused series with

an underrepresentation of ALS. The frequency in our clinical

FTD patient series was 3.0% of sporadic cases and 11.7% of

familial patients. In our clinical ALS series, 4.1% of the sporadic

and 23.5% of patients with a positive family history carried

repeat expansions. Importantly, a direct comparison of the

frequency of repeat expansions in C9ORF72 with mutations in

SOD1, TARDBP, and FUS revealed GGGGCC expansions to

be the most common genetic cause of sporadic and familial

ALS in our clinical series (Table 1). In clinical FTD, GGGGCC

repeat expansions were found to be more common than either

GRN or microtubule associated protein tau (MAPT) mutations

in familial cases, and of equal frequency to GRN mutations in

sporadic FTD.

Clinical and Pathological Characteristics of Expanded
GGGGCC Repeat Carriers
Clinical data was obtained for the 26 unrelated expanded repeat

carriers from the clinical FTD series and the 16 unrelated

carriers from the ALS series. The median age of onset was

comparable in the two series (FTD: 56.2 years, range 34–72

years; ALS: 54.5 years, range 41–72 years), with a slightly

shorter mean disease duration in the ALS patients (FTD: 5.1 ±

3.1 years, range 1–12 years, n = 18; ALS: 3.6 ± 1.6 years, range

1–6 years, n = 7). The FTD phenotype was predominantly

behavioral variant FTD (bvFTD) (25/26). Importantly, seven

patients from the FTD series (26.9%) had concomitant ALS

and eight patients (30.7%) had relatives affected with ALS. In

comparison, the frequency of a family history of ALS in the

remainder of our FTD population (those without repeat expan-

sions) was only 5/348 (1.4%). In the ALS series, all mutation

carriers presented with classical ALS with the exception of

one patient diagnosed with progressive muscular atrophy

without upper motor neuron signs. Three patients (18.8%)

were diagnosed with a combined ALS/FTD phenotype. In the

ALS patients with expanded repeats, 11/16 (68.8%) reported

relatives with FTD or dementia, compared to only 61/213

(28.6%) of ALS patients without repeat expansions. Finally,

autopsy was subsequently performed on 11 FTD and three

ALS expanded repeat carriers from the clinical series, and in

all cases, TDP-43 based pathology was confirmed.

Comparison of Haplotypes Carrying Expanded GGGGCC
Repeats with Previously Reported Chromosome 9p
‘‘Risk’’ Haplotype
We previously described an �140 kb risk haplotype on chromo-

some 9p21, that was shared by four chromosome 9p-linked

families and showed significant association with FTD and ALS
Neuron 72, 1–12, October 20, 2011 ª2011 Elsevier Inc. 3



Figure 2. Expanded GGGGCC Hexanucleotide Repeat in C9ORF72 Causes FTD and ALS Linked to Chromosome 9p in Family VSM-20

(A) Segregation of GGGGCC repeat in C9ORF72 and flanking genetic markers in disguised linkage pedigree of family VSM-20. The arrowhead denotes the

proband. For the GGGGCC repeat, numbers indicate hexanucleotide repeat units and the X denotes that the allele could not be detected. Black symbols

represent patients affected with frontotemporal dementia (left side filled), amyotrophic lateral sclerosis (right side filled), or both. White symbols represent

unaffected individuals or at-risk individuals with unknown phenotype. Haplotypes for individuals 20-1, 20-2, and 20-3 are inferred from genotype data of siblings

and offspring.

(B) Fluorescent fragment length analyses of a PCR fragment containing the GGGGCC repeat in C9ORF72. PCR products from the unaffected father (20-9),

affected mother (2-10), and their offspring (20-16, 20-17, and 20-18) are shown illustrating the lack of transmission from the affected parent to affected offspring.

Numbers under the peaks indicate number of GGGGCC hexanucleotide repeats.

(C) PCR products of repeat-primed PCR reactions separated on an ABI3730 DNA Analyzer and visualized by GENEMAPPER software. Electropherograms are

zoomed to 2,000 relative fluorescence units to show stutter amplification. Two expanded repeat carriers (20-8 and 20-15) and one noncarrier (20-5) from family

VSM-20 are shown.

(D) Southern blotting of four expanded repeat carriers and one noncarrier from family member of VSM-20 using genomic DNA extracted from lymphoblast cell

lines. Lane 1 shows DIG-labeled DNA Molecular Weight Marker II (Roche) with fragments of 2,027; 2,322; 4,361; 6,557; 9,416; 23,130 bp. Lane 2 shows DIG-

labeled DNA Molecular Weight Marker VII (Roche) with fragments of 1,882; 1,953; 2,799; 3,639; 4,899; 6,106; 7,427; and 8,576 bp. Patients with expanded

repeats (lanes 3–6) show an additional allele from 6.5–12 kb, while a normal relative (lane 7) only shows the expected 2.3 kb wild-type allele.
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in at least eight populations (Mok et al., 2011). To determine

whether all GGGGCC expanded repeat carriers identified in

this study also carried this ‘‘risk’’ haplotype, and to further study
4 Neuron 72, 1–12, October 20, 2011 ª2011 Elsevier Inc.
the significance of this finding, we selected the variant

rs3849942 as a surrogate marker for the ‘‘risk’’ haplotype for

genotyping in our patient and control populations. All 75



Table 1. Frequency of Chromosome 9p Repeat Expansion in FTLD and ALS

Cohort n

Number of Mutation Carriers (%)

c9FTD/ALS GRN MAPT SOD1 TARDBP FUS

UBC FTLD-TDP

Familial 26 16 (61.5) 7 (26.9) n/a n/a n/a n/a

MCF FTLD-TDP

Familial 40 9 (22.5) 6 (15.0) n/a n/a n/a n/a

Sporadica 53 8 (15.1) 8 (15.1) n/a n/a n/a n/a

MC Clinical FTD

Familial 171 20 (11.7) 13 (7.6) 12 (6.3) n/a n/a n/a

Sporadic 203 6 (3.0) 6 (3.0) 3 (1.5) n/a n/a n/a

MCF Clinical ALS

Familial 34 8 (23.5) n/a n/a 4 (11.8) 1 (2.9) 1 (2.9)

Sporadic 195 8 (4.1) n/a n/a 0 (0.0) 2 (1.0) 3 (1.5)

ALS = amyotrophic lateral sclerosis; c9FTD/ALS = (GGGGCC)n repeat expansion at chromosome 9p identified in this study; FTD = frontotemporal

dementia; FTLD-TDP = frontotemporal lobar degeneration with TDP-43 pathology; FUS = fused in sarcoma gene; GRN = progranulin gene;

MAPT =microtubule-associated protein tau gene; MC =Mayo Clinic; MCF =Mayo Clinic Florida; n/a = not assessed; SOD1 = superoxide dismutase 1

gene; TARDBP = TAR DNA-binding protein 43 gene; UBC = University of British Columbia.
a Includes 22 individuals for which no information on family history was available.
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unrelated expanded repeat carriers had at least one copy of the

‘‘risk’’ haplotype (100%) compared to only 23.1% of our control

population. In order to associate the repeat sizes with the pres-

ence or absence of the ‘‘risk’’ haplotype, we further focused on

controls homozygous for rs3849942 (505 GG and 49 AA) and

determined the distribution of the repeat sizes in both groups

(Figure 3). We found a striking difference in the number of

GGGGCC repeats, with significantly longer repeats on the

‘‘risk’’ haplotype tagged by allele ‘‘A’’ compared to the wild-

type haplotype tagged by allele ‘‘G’’ (median repeat length: risk

haplotype = 8, wild-type haplotype = 2; average repeat length:

risk haplotype = 9.5, wild-type haplotype = 3.0; p < 0.0001).

Sequencing analysis of 48 controls in which the repeat length

was the same on both alleles (range = 2–13 repeat units) further

showed that the GGGGCC repeat was uninterrupted in all

individuals.
Figure 3. Correlation of GGGGCC Hexanucleotide Repeat Length

with rs3849942, a Surrogate Marker for the Previously Published

Chromosome 9p ‘‘Risk’’ Haplotype

Histograms of number of GGGGCC repeats in 505 controls homozygous

for the rs3849942 G-allele and 49 controls homozygous for the rs3849942

A-allele.
Expanded GGGGCC Repeat Affects C9ORF72

Expression in a Transcript-Specific Manner
One potential mechanism by which expansion of a noncoding

repeat region might lead to disease is by interfering with normal

expression of the encoded protein. Through a complex process

of alternative splicing, three C9ORF72 transcripts are produced

which are predicted to lead to the expression of two alternative

isoforms of the uncharacterized protein C9ORF72 (Figure 4A).

Transcript variants 1 and 3 are predicted to encode for a 481

amino acid long protein encoded by C9ORF72 exons 2–11

(NP_060795.1; isoform a), whereas variant 2 is predicted to

encode a shorter 222 amino acid protein encoded by exons

2–5 (NP_659442.2; isoform b) (Figure 4A). RT-PCR analysis

showed that all C9ORF72 transcripts were present in a variety

of tissues, and immunohistochemical analysis in brain further

showed that C9ORF72 was largely a cytoplasmic protein in

neurons (Figure S2).

The GGGGCC hexanucleotide repeat is located between two

alternatively spliced noncoding first exons, and depending on

their use, the expanded repeat is either located in the promoter

region (for transcript variant 1) or in intron 1 (for transcript vari-

ants 2 and 3) of C9ORF72 (Figure 4A). This complexity raises

the possibility that the expanded repeat affects C9ORF72

expression in a transcript-specific manner. To address this

issue, we first determined whether each of the three C9ORF72

transcripts, carrying the expanded repeat, produce mRNA

expression in brain. For this, we selected two GGGGCC repeat

carriers for which frozen frontal cortex brain tissue was available

and who were heterozygous for the rare sequence variant

rs10757668 in C9ORF72 exon 2. Comparison of sequence

traces of C9ORF72 exon 2 in gDNA and transcript-specific

cDNAs amplified from these patients showed the absence of

variant 1 transcribed from the mutant RNA (G-allele) but normal

transcription of variants 2 and 3 (Figure 4B). The loss of variant 1

expression in the GGGGCC repeat carriers was further con-

firmed by real-time RT-PCR using a custom-designed Taqman
Neuron 72, 1–12, October 20, 2011 ª2011 Elsevier Inc. 5



Figure 4. Effect of Expanded Hexanucleotide Repeat on C9ORF72 Expression
(A) Overview of the genomic structure of the C9ORF72 locus (top panel) and the C9ORF72 transcripts produced by alternative pre-mRNA splicing (bottom

panels). Boxes represent coding (white) and noncoding (gray) exons and the positions of the start codon (ATG) and stop codon (TAA) are indicated. The GGGGCC

repeat is indicated with a red diamond. The position of rs10757668 is indicated with a green star.

(B) Sequence traces of C9ORF72 exon 2 spanning rs10757668 in gDNA (top panel) and cDNA (bottom panels) prepared from frontal cortex of an FTLD-TDP

patient carrying an expanded GGGGCC repeat. The arrow indicates the presence of the wild-type (G) and mutant (A) alleles of rs10757668 in gDNA. Transcript-

specific cDNAs were amplified using primers spanning the exon 1b/exon 2 boundary (variant 1) or exon 1a/exon 2 boundary (variants 2 and 3). Sequenced traces

derived from cDNA transcripts indicate the loss of variant 1 but not variant 2 or 3 mutant RNA. Similar results were obtained for two unrelated FTLD-TDPmutation

carriers. The bottom panel shows a non-expanded repeat carrier heterozygous for rs10757668 to confirm the presence of both alleles of transcript variant 1

validating the method.

(C) mRNA expression analysis of C9ORF72 transcript variant 1 using a custom-designed Taqman expression assay. Top panel shows lymphoblast cell lines

derived from expanded repeat carriers from family VSM-20 (n = 7) and controls (n = 7) and bottom panel shows RNA extracted from frontal cortex brain samples

from FTLD-TDP patients with (n = 7) and without (n = 7) the GGGGCC repeat expansion. Data indicate mean ± SEM. **p < 0.01.

(D) mRNA expression analysis of all C9ORF72 transcripts encoding for C9ORF72 isoform a (variants 1 and 3) using inventoried ABI Taqman expression assay

Hs_00945132. Top panel shows RNA extracted from lymphoblast cell lines derived from expanded repeat carriers from family VSM-20 (n = 7) and controls (n = 7),

and bottom panel showsRNA extracted from frontal cortex brain samples from FTLD-TDP patients with (n = 7) andwithout (n = 7) theGGGGCC repeat expansion.

Data indicate mean ± SEM. *p < 0.05.
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Figure 5. Expanded GGGGCC Hexanucleotide Repeat Forms

Nuclear RNA Foci in Human Brain and Spinal Cord

(A) Multiple RNA foci in the nucleus (stained with DAPI, blue) of a frontal cortex

neuron of the proband of family 63 (63-1) using a Cy3-labeled (GGCCCC)4
oligonucleotide probe (red).

(B) RNA foci observed in the nucleus of two lower motor neurons in FTD/ALS

patient (13-7) carrying an expanded GGGGCC repeat using a Cy3-labeled

(GGCCCC)4 oligonucleotide probe.

(C) Absence of RNA foci in the nucleus of cortical neuron from FTLD-TDP

patient (44-1) without an expanded GGGGCC repeat in C9ORF72.

(D) Spinal cord tissue sections from patient 13-7 that showed RNA foci with the

(GGCCCC)4 oligonucleotide probe in (B) did not show any foci with a Cy3-

labeled (CAGG)6 oligonucleotide probe (negative control probe).

Scale bar: 10 mm (A and C), 20 mm (B and D).
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assay specific to variant 1. In lymphoblast cell lines of patients

from family VSM-20 and in frontal cortex samples from unrelated

FTLD-TDP patients carrying expanded repeats, the level of

C9ORF72 variant 1 was approximately 50% reduced compared

to nonrepeat carriers (Figure 4C). Since C9ORF72 variants 1

and 3, which each contain a different noncoding first exon,

both encode C9ORF72 isoform a (NP_060795.1), we next deter-

mined the effect of the expanded repeats on the total levels of

transcripts encoding this isoform (variants 1 and 3 combined)

using an inventoried ABI Taqman assay (Hs_00945132). Signifi-

cant mRNA reductions were observed in both lymphoblast cells

(34% reduction) and frontal cortex samples (38% reduction)

from expanded repeat carriers (Figure 4D). In contrast, no appre-

ciable changes in total levels of C9ORF72 protein could be

observed by western blot analysis of lymphoblast cell lysates

or brain (Figure S2), or by immunohistochemical analysis of

C9ORF72 in postmortem brain or spinal cord tissue from ex-

panded repeat carriers (Figure S2). These protein expression

data should, however, be considered preliminary since they

are based on a limited number of samples using relatively un-

characterized commercially obtained C9ORF72 antibodies

without detailed quantitative analyses.

The Transcribed GGGGCC Repeat Forms Nuclear RNA
Foci in Affected Central Nervous System Regions
of Mutation Carriers
In recent years, intracellular accumulation of expanded nucleo-

tide repeats as RNA foci in the nucleus and/or cytoplasm of

affected cells has emerged as an important disease mechanism

for the growing class of noncoding repeat expansion disorders

(Todd and Paulson, 2010). To determine whether GGGGCC

repeat expansions in C9ORF72 result in the formation of RNA

foci, we performed RNA fluorescence in situ hybridization

(FISH) in paraffin-embedded sections of postmortem frontal

cortex and spinal cord tissue from FTLD-TDP patients. For

each neuroanatomical region, sections from two patients with

expanded GGGGCC repeats and two affected patients with

normal repeat lengths were analyzed. Using a probe targeting

the GGGGCC repeat (probe (GGCCCC)4), multiple RNA foci

were detected in the nuclei of 25% of cells in both the frontal

cortex and the spinal cord from patients carrying the expansion,

whereas a signal was observed in only 1% of cells in tissue

sections from noncarriers (Figures 5A–5C). Foci were never

observed in any of the samples using a probe targeting the

unrelated CCTG repeat (probe (CAGG)6), implicated in myotonic

dystrophy type 2 (DM2) (Liquori et al., 2001), further supporting

the specificity of the RNA foci composed of GGGGCC in these

patients (Figure 5D).

DISCUSSION

The identification of an expanded non-coding GGGGCC repeat

in C9ORF72 resolves an important question in the FTD and

ALS fields, namely the genetic basis of FTD/ALS linked to chro-

mosome 9p21. This finding adds FTD/ALS to the growing class

of noncoding repeat expansion disorders, which includes the

myotonic dystrophies (DM1 and DM2) (Brook et al., 1992; Liquori

et al., 2001; Mahadevan et al., 1992), fragile-X associated
tremor/ataxia syndrome (FXTAS) (Galloway and Nelson, 2009;

Tassone et al., 2004), and several spinocerebellar ataxias

(SCA8, SCA10, SCA31, SCA36) (Daughters et al., 2009; Kobaya-

shi et al., 2011; Moseley et al., 2006; Sato et al., 2009).

We identified a total of 75 unrelated expanded GGGGCC

repeat carriers in the 722 patients included in this study

(10.4%). Patients presented with FTD, ALS, or a combination

of both. The highest frequency of C9ORF72 repeat expansions

was observed in a selected series of pathologically confirmed

FTLD-TDP probands with a strong family history of FTD

and/or ALS ascertained at UBC (61.6%). A second pathologi-

cally confirmed FTLD-TDP series from the MCF brain bank

showed a lower frequency of repeat expansion in familial cases

(22.5%); the difference most likely reflecting the much smaller

number of ALS patients and the fact that in most of the families,

the proband had only a single relative with dementia of unspec-

ified type. Expanded GGGGCC repeats in C9ORF72 also ac-

counted for 11.7% of familial FTD and 23.5% of familial ALS

patients from our sequential series of clinical patients ascer-

tained at Mayo Clinic. A direct comparison with mutation fre-

quencies of the previously identified common genes for FTD

and ALS in our series showed that C9ORF72 repeat expansions

are the most common cause of familial forms of FTD and ALS

identified to date. The C9ORF72 repeat expansion also
Neuron 72, 1–12, October 20, 2011 ª2011 Elsevier Inc. 7
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explained the disease in a significant proportion of sporadic FTD

and ALS patients and was the most common genetic cause of

sporadic ALS in our series (4%). Therefore, the GGGGCC repeat

expansion is a genetic abnormality identified as a common

cause of both FTD and ALS phenotypes, is expected to be

present in the majority of FTD/ALS families, and likely accounts

for most of the risk associated with the recently reported

FTLD-TDP and ALS GWAS hits in this region.

The expanded GGGGCC repeat is located in the non-coding

region of C9ORF72, a gene that encodes an uncharacterized

protein with no known domains or function, but which is highly

conserved across species. We show that in normal individuals

at least three alternatively spliced C9ORF72 transcripts (variants

1–3) are expressed in most tissues including brain. Immunohis-

tochemical analysis confirmed C9ORF72 expression in neurons

of neuroanatomical regions affected in FTD and ALS with the

staining pattern being consistent with predominantly cyto-

plasmic and synaptic localization. Quantitative mRNA expres-

sion analysis indicated that the GGGGCC repeat expansion

abolishedC9ORF72 transcript variant 1 expression from themu-

tant allele, leading to a significant overall reduction in C9ORF72

transcripts encoding C9ORF72 isoform a. Depending on the

relative expression of the various transcripts, the loss of

C9ORF72 transcript 1 may have a significant impact on selective

tissues or cell types. Although preliminary analyses of C9ORF72

protein levels in cultured cells and whole brain tissue homoge-

nate did not show an obvious change in the steady-state levels,

we cannot exclude the possibility that reduced transcript levels

of C9ORF72 affect protein translation under conditions of stress

or may affect protein turnover and/or function. We also cannot

guarantee the specificity of the commercial C9ORF72 antibodies

used in this study since careful characterization of these anti-

bodies has not yet been performed. In future experiments it will

be crucial to generate more specific C9ORF72 antibodies and

develop more quantitative approaches to measure C9ORF72

levels to further clarify the expression and localization of each

of the C9ORF72 isoforms in different tissues and at various

stages of disease progression. Although speculative at this

time, it is possible that the expression pattern of C9ORF72 in

individual patients may contribute to the variability in disease

phenotype (FTD versus ALS) or course.

A common feature of non-coding repeat expansion disorders

which has gained increased attention in recent years is the accu-

mulation of RNA fragments composed of the repeated nucleo-

tides as RNA foci in the nucleus and/or cytoplasm of affected

cells (Todd and Paulson, 2010). In several disorders, the RNA

foci have been shown to sequester RNA-binding proteins,

leading to dysregulation of alternative mRNA splicing (Miller

et al., 2000; Sofola et al., 2007; Timchenko et al., 1996; White

et al., 2010). Using an oligonucleotide probe specific for the

GGGGCC repeat we confirmed the presence of such nuclear

RNA foci in postmortem cerebral cortex and spinal cord tissue

ofC9ORF72 expanded repeat carriers. The GGGGCC sequence

motif predicts the potential binding of several RNA-binding

proteins, including the serine/arginine-rich splicing factor 1

(SRSF1) and the heterozygous nuclear ribonucleoprotein

(hnRNP) A2/B1 (Cartegni et al., 2003; Smith et al., 2006; Sofola

et al., 2007). Although future studies are needed to clarify
8 Neuron 72, 1–12, October 20, 2011 ª2011 Elsevier Inc.
whether these or other RNA-binding proteins play any role in

disease pathogenesis, aberrant RNA splicing is a highly plau-

sible mechanism in chromosome 9p-linked FTD/ALS given the

accumulating evidence for RNA misprocessing in the pathogen-

esis of both ALS and FTD (Bäumer et al., 2010). Dysregulation of

hnRNP A2/B1 is a particularly interesting possibility since this

protein is known to interact with the C/G-rich repeats that form

RNA foci in another neurodegenerative condition (FXTAS) and

because hnRNP A2/B1 has been shown to interact directly

with TDP-43 (Buratti et al., 2005; Sofola et al., 2007). Identifying

the aberrantly splicedRNA targets that are critical in diseasemay

be the key to future therapeutic strategies.

The GGGGCC repeat length in healthy individuals ranged from

2–23 hexanucleotide units, whereas we estimated the repeat

length to be 700–1600 units in FTD/ALS patients based on DNA

from lymphoblast cell lines. Accurate sizing of the repeat is chal-

lenging, especially in DNA extracted from peripheral blood and

brain tissue samples, where a smear of high molecular weight

bands suggested somatic repeat instability (Figure S1). Notably,

the large number of repeats observed in our patients is similar to

other noncoding repeat expansion disorders where more than

1000 repeat copies are common (Liquori et al., 2001;Mahadevan

et al., 1992; Moseley et al., 2006; Sato et al., 2009; Timchenko

et al., 1996). However, the minimal repeat size needed to cause

FTD/ALS remains to be determined and may be significantly

smaller. Importantly, anticipation was not apparent in most of

our families, although occasionally a significantly earlier onset

was observed in the youngest generation. This could simply

reflect heightened awareness by family members or caregivers;

however, it remains possible that repeat length is correlated

with the age of disease onset or clinical presentation. Future

studies are needed to fully resolve this question.

In previous studies, we and others suggested that a single

�140 kb ‘‘risk’’ haplotype, broadly defined by SNP rs3849942

allele ‘‘A,’’ was shared by all affected family members of chromo-

some 9p-linked families and that this same haplotype was

responsible for the ALS and FTLD-TDP GWAS hits at chromo-

some 9p (Mok et al., 2011). The presence of the ‘‘risk’’ haplotype

in all 75 unrelated expanded repeat carriers in our study further

confirms the strong association of this haplotype with disease.

While these findings are consistent with the previously proposed

hypothesis of a single founder mutation, the identification of an

expanded hexanucleotide repeat as the basis for disease in

these patients now suggests the possibility that the abnormal

repeat may occur on a predisposing haplotypic background

that is prone to expansion. This alternative hypothesis is sup-

ported by our finding of significantly longer repeats on the

‘‘risk’’ haplotype (defined by rs3849942 allele ‘‘A’’) compared

to the wild-type haplotype (defined as rs3849942 allele ‘‘G’’) in

the normal population. The somewhat unusual observation that

the GGGGCC repeat was uninterrupted in control individuals

carrying a range of normal allele sizes further supports this

alternative hypothesis. De novo expansions of uninterrupted

GGGGCC sequences at the long end of the normal spectrum

could potentially explain the sporadic nature of the disease in

a subset of our patients.

In summary, we identified a noncoding expanded GGGGCC

hexanucleotide repeat inC9ORF72 as the cause of chromosome
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9p-linked FTD/ALS and showed that this genetic defect is the

most common cause of ALS and FTD identified to date. Our

findings suggest multiple potential disease mechanisms associ-

ated with this repeat expansion, including a direct effect on

C9ORF72 expression by affecting transcription (loss-of-function

mechanism) and an RNA-mediated gain-of-function mechanism

through the generation of toxic RNA foci. Future molecular

studies are needed to explore how each mechanism contributes

to neurodegeneration and pathological TDP-43 aggregation.

Moreover, evaluation of larger numbers of patients with FTD

and ALS associated with the expanded GGGGCC hexanucleo-

tide repeat in C9ORF72 is warranted to further delineate the

range of phenotypes and prevalence of these disorders, and

to investigate the potential of the repeat for properties such as

anticipation and spontaneous mutation. Finally, we suggest

that in future publications this genetic defect be referred to as

‘‘c9FTD/ALS.’’

While our manuscript was in preparation we learned of an-

other group who independently identified repeat expansions in

C9ORF72 as the cause of FTD and ALS linked to chromosome

9p (Renton et al. 2011).
EXPERIMENTAL PROCEDURES

Human Samples

Four extensive FTD and ALS patient cohorts and one control cohort were

included in this study. All individuals agreed to be in the study and biological

samples were obtained after informed consent from subjects and/or their

proxies. Demographic and clinical information for each cohort is summarized

in Table S1. The proband of chromosome 9p-linked family VSM-20 is part of

a series of 26 probands ascertained at UBC, Vancouver, Canada, character-

ized by a pathological diagnosis of FTLD with TDP-43 pathology (FTLD-TDP)

and a positive family history of FTD and/or ALS (UBC FTLD-TDP cohort). Clin-

ical and pathological evaluations of VSM-20 were conducted at UCSF, UBC,

and the Mayo Clinic (Boxer et al., 2011). A second cohort of 93 pathologically

confirmed FTLD-TDP patients independent of family history was selected from

the Mayo Clinic Florida (MCF) brain bank (MCF FTLD-TDP cohort) which

focuses predominantly on dementia. The clinical FTD cohort (MC Clinical

FTD cohort) represents a sequential series of patients seen by the Behavioral

Neurology sections at MCF (n = 197) and MCR (n = 177), the majority of whom

were participants in theMayo Alzheimer’s Disease ResearchCenter. Members

of Family 118 were participants in the Mayo Alzheimer’s Disease Patient

Registry. Clinical FTD patients underwent a full neurological evaluation, and

all who were testable had a neuropsychological evaluation. Structural neuro-

imaging was performed in all patients and functional imaging was performed

in many patients. Patients with a clinical diagnosis of behavioral variant FTD

(bvFTD), semantic dementia or progressive non-fluent aphasia based on

Neary criteria (Neary et al., 1998), or patients with the combined phenotype

of bvFTD and ALS were included in this study, while patients with a diagnosis

of logopenic aphasia or corticobasal syndrome were excluded. In the MCF

FTLD-TDP cohort and the MC Clinic FTD cohort, a positive family history

was defined as a first- or second-degree relative with FTD and/or ALS or

a first-degree relative with memory problems, behavioral changes, parkin-

sonism, schizophrenia, or another suspected neurodegenerative disorder. It

should be noted that information about family history was lacking in a signifi-

cant proportion (23.7%) of theMCF FTLD-TDP cohort and thesewere included

in the ‘‘sporadic’’ group. The MCF clinical ALS cohort represents a sequential

series of 229 clinical ALS patients ascertained by the ALS Center at MCF.

These patients underwent a full neurological evaluation including electromy-

ography, clinical laboratory testing, and imaging as appropriate to establish

the clinical diagnosis of ALS. A positive family history in the MCF ALS series

was defined as a first- or second-degree relative with ALS. The Control cohort

(n = 909) was comprised of DNA samples from 820 control individuals
collected from the Department of Neurology and DNA extracted from 89

normal control brains from the MCF brain bank.

Characterization of Hexanucleotide Repeat Insertion in C9ORF72

Genomic Region

TheGGGGCC hexanucleotide repeat inC9ORF72was PCR amplified in family

VSM-20 and in all patient and control cohorts using the genotyping primers

listed in Table S2 using one fluorescently labeled primer followed by fragment

length analysis on an automated ABI3730 DNA-analyzer (Applied Biosystems).

The PCR reaction was carried out in a mixture containing 1M betaine solution,

5% dimethylsulfoxide, and 7-deaza-2-deoxy GTP in substitution for dGTP.

Allele identification and scoring was performed using GeneMapper v4.0 soft-

ware (Applied Biosystems). To determine the number of GGGGCC units and

internal composition of the repeat, 48 individuals homozygous for different

fragment lengths were sequenced using the PCR primers.

Repeat-Primed PCR Analysis

To provide a qualitative assessment of the presence of an expanded

(GGGGCC)n hexanucleotide repeat in C9ORF72, we performed a repeat-

primed PCR reaction in the presence of 1M betaine, 5% dimethyl sulfoxide

and complete substitution of 7-deaza-2-deoxy GTP for dGTP using a previ-

ously optimized and described cycling program (Hantash et al., 2010). Primer

sequences are provided in Table S2. PCR products were analyzed on an

ABI3730 DNA Analyzer and visualized using GeneMapper software.

Probe Labeling, Agarose Gel Electrophoresis, Southern Transfer,

Hybridization, and Detection

A 241 bp digoxigenin (DIG)-labeled probe was generated using primers listed

in Table S2 from 10 ng gDNA by PCR reaction using PCR DIG Probe Synthesis

Kit Expand High fidelity mix enzyme and incorporating 0.35 mM DIG-11-

dUTP: 0.65 mM dTTP (1:6) in the dNTP labeling mix as recommended in the

DIG System User’s Guide (Roche Applied Science). A total of 2 ml of PCR

labeled probe per ml of hybridization solution was used as recommended in

the DIG System User’s Guide. A total of 5–10 mg of gDNA was digested

with XbaI at 37�C overnight and electrophoresed in 0.8% agarose gels in

13 TBE. DNA was transferred to positively charged nylon membrane (Roche

Applied Science) by capillary blotting and crosslinked by UV irradiation.

Following prehybridization in 20 ml DIG EasyHyb solution at 47�C for 3 hr,

hybridization was carried out at 47�C overnight in a shaking water bath. The

membranes were then washed two times in 23 standard sodium citrate

(SSC), 0.1% sodium dodecyl sulfate (SDS) at room temperature for 5 min

each and twice in 0.13 SSC, 0.1% SDS at 68�C for 15 min each. Detection

of the hybridized probe DNA was carried out as described in the User’s Guide.

CDP-star chemiluminescent substrate was used and signals were visualized

on X-ray film after 5 to 15 hr.

SNP Genotyping

SNP rs3844942 was genotyped using a custom-designed Taqman SNP gen-

otyping assay on the 7900HT Fast Real Time PCR system. Primers are in-

cluded in Table S2. Genotype calls were made using the SDS v2.2 software

(Applied Biosystems, Foster City, CA).

C9ORF72 Quantitative Real-Time PCR

Total RNA was extracted from lymphoblast cell lines and brain tissue samples

with the RNAeasy Plus Mini Kit (QIAGEN) and reverse transcribed to cDNA

using Oligo dT primers and the SuperScript III Kit (Invitrogen). RNA integrity

was checked on an Agilent 2100 Bioanalyzer. Following standard protocols,

real-time PCR was performed with inventoried TaqMan gene expression

assays for GAPDH (Hs00266705) and C9ORF72 (Hs00945132) and one

custom-designed assay specific to the C9ORF72 variant 1 transcript

(Table S3; Applied Biosystems) and analyzed on an ABI Prism 7900 system

(Applied Biosystems). All samples were run in triplicate. Relative Quantifica-

tion was determined using the DDCt method after normalization to GAPDH.

For the custom designed C9ORF72 variant 1 Taqman assay, probe efficiency

was determined by generation of a standard curve (slope: �3.31459,

r2: 0.999145).
Neuron 72, 1–12, October 20, 2011 ª2011 Elsevier Inc. 9
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C9ORF72 gDNA and cDNA Sequencing

To determine the genotype for rs10757668 in gDNA, C9ORF72 exon 2 was

amplified using flanking primers c9orf72-2aF and c9orf72-2aR (Table S3).

PCR products were purified using AMPure (Agencourt Biosciences) then

sequenced in both directions with the same primers using the Big Dye Termi-

nator v3.1 Cycle Sequencing kit (Applied Biosystems). Sequencing reactions

were purified using CleanSEQ (Agencourt Biosciences) and analyzed on

an ABI3730 Genetic Analyzer (Applied Biosystems). Sequence data was

analyzed with Sequencher 4.5 software (Gene Codes). For cDNA sequencing,

total RNA was isolated from frontal cortex tissue using the RNAeasy Plus Mini

Kit (QIAGEN). Reverse transcription reactions were performed using Super-

Script III Kit (Invitrogen). RT-PCR was performed using primers specific

for each of the three C9ORF72 mRNA transcripts; V1: cDNA-V1-1F with

cDNA-2F, V2: cDNA-V2-1F with cDNA-2F, V3: cDNA-V3-1F with cDNA-2F

(Table S2). PCR products were sequenced as described, and sequence

data from each of the three transcripts were visualized for the genotype status

of rs10757668.

C9ORF72 Western Blot Analysis

Human-derived lymphoblast cells and frontal cortex tissue were homogenized

in radioimmunoprecipitation assay (RIPA) buffer and protein content was

measured by the BCA assay (Pierce). Twenty and fifty micrograms of protein

were loaded for the lymphoblast and brain tissue lysates, respectively, and

run on 10% SDS gels. Proteins were transferred onto Immobilon membranes

(Invitrogen) and probed with antibodies against C9ORF72 (Santa Cruz 1:5,000

for lymphoblast cell lines and GeneTex 1:2,000 for frontal cortex brain

samples). The epitopes used to raise these antibodies are amino acids

1–158 (GeneTex) and 165–215 (Santa Cruz), and the antibodies are therefore

predicted to recognize C9ORF72 isoforms a and b. A GAPDH antibody

(Meridian Life Sciences 1:500,000) was used as an internal control to verify

equal protein loading between samples.

RNA-FISH

For in situ hybridization two 20-O-methyl RNA 50oligos labeled with Cy3 were

ordered from IDT (Coralville, IA): (GGCCCC)4 predicted to hybridize to the

expanded GGGGCC repeat identified in this study and (CAGG)6 predicted

to hybridize only to CCTG repeats observed in DM2 and included in this

experiment as a negative control. Slides were pretreated following the

in situ hybridization protocol from AbCam with minor modifications. Lyophi-

lized probe was re-constituted to 100 ng/ml in nuclease free water. Probe

working solutions of 5 ng/ml were used for paraffin specimens, and diluted

in LSI/WCP Hybridization Buffer (Abbott Molecular). Following overnight

hybridization, slides were washed three times in 13 PBS at 37�C for 5 min

each. DAPI counterstain (VectaShield) was applied to each specimen and

coverslipped. For each patient, 100 cells were scored for the presence of

nuclear RNA foci per tissue section.

Immunohistochemistry

Immunohistochemistry for C9ORF72 was performed on sections of post-mor-

tem brain and spinal cord tissue from patients with FTLD-TDP pathology

known to carry the GGGGCC repeat expansion (n = 4), patients with FTLD-

TDP without the repeat expansion (n = 4), ALS without the repeat expansion

(n = 4), other molecular subtypes of FTLD (n = 4), Alzheimer’s disease

(n = 2), and neurologically normal controls (n = 4). Immunohistochemistry

was performed on 3 mm thick sections of formalin fixed, paraffin embedded

postmortem brain and spinal cord tissue using the Ventana BenchMark XT

automated staining system (Ventana, Tuscon, AZ) with anti-C9ORF72 primary

antibody (Sigma-Aldrich, anti-C9orf72, generated using amino acid 110–199

as epitope; 1:50 overnight incubation following microwave antigen retrieval)

and developed with aminoethylcarbizole (AEC).
ACCESSION NUMBERS

We have deposited the sequence for transcript variant 3 of C9ORF72 in

GenBank with the accession number JN681271.
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